The Analytical Solution of Parabolic Volterra Integro-Differential Equations in the Infinite Domain

نویسندگان

  • Yun Zhao
  • Fengqun Zhao
چکیده

Abstract: This article focuses on obtaining analytical solutions for d-dimensional, parabolic Volterra integro-differential equations with different types of frictional memory kernel. Based on Laplace transform and Fourier transform theories, the properties of the Fox-H function and convolution theorem, analytical solutions for the equations in the infinite domain are derived under three frictional memory kernel functions. The analytical solutions are expressed by infinite series, the generalized multi-parameter Mittag-Leffler function, the Fox-H function and the convolution form of the Fourier transform. In addition, graphical representations of the analytical solution under different parameters are given for one-dimensional parabolic Volterra integro-differential equations with a power-law memory kernel. It can be seen that the solution curves are subject to Gaussian decay at any given moment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations

In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...

متن کامل

Analytical Treatment of Volterra Integro-Differential Equations of Fractional Derivatives

In this paper the solution of the Volterra integro-differential equations of fractional order is presented. The proposed method consists in constructing the functional series, sum of which determines the function giving the solution of considered problem. We derive conditions under which the solution series, constructed by the method is convergent. Some examples are presented to verify convergen...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016